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A.5 Wave impedances (characteristic impedances) 

For the progressive transversal wave, the characteristic impedance ZW (equivalent term: 

wave impedance) connects the transverse force F to the transverse velocity v. For the 

idealized (rigidity-free) string, ZW depends on the length-specific mass m' and the length-

specific compliance n': 

 

        Wave impedance 

 

In this case, we have the following correspondences: Ψ = clamping force, ρ = density, D = 

diameter, M = scale♣, fG = fundamental frequency, c = phase velocity. Common ZW-values are 

between 0.1 and 0.4 Ns/m for solid strings. For wound strings, the flexural stiffness may be 

ignored in the low frequencies-range;  may simply be replaced by . The associated wave 

impedances are then in the range between 0.3 and 1.2 Ns / m.  

 

  
 

Fig. A.5.1: Wave impedance for different outer diameters. The dashed curves belong to strings with a relatively 

thin core. In the E2 string (right), the influence of bending stiffness can be seen in the upper frequency range. 

With decreasing string diameter, the bending stiffness loses its importance; the flexural wave becomes a 

transversal wave. “Aussendurchmesser” = outer diameter, “Frequenz” = frequency; “h” (string) = B (string) 

 

Taking into account the flexural rigidity, we encounter more complicated relationships. The 

wave equation now contains, in addition to the second spatial derivative, a fourth spatial 

derivative. Because of this, not only progressive waves (in both directions) occur, but also 

exponentially decreasing fringe fields (in the vicinity of the bearings). The progressive waves 

need to be classified into bending waves and bending-moment waves, and therefore it is 

necessary to define an M/w-wave-impedance in addition to an F/v-wave-impedance. The 

M/w-wave-impedance similarly connects the bending moment to the angular velocity. Both 

resistances are real, but frequency dependent. In a string, the transverse dimensions are small 

compared to the wavelength of the flexural wave ("thin rod"), and a simplification may be 

applied: outside of the fringe fields that extend merely a few millimeters, the description for 

one single wave type is sufficient. The four wave quantities are: F, v, M, w (Chapters A.4.1 & 

A.4.2); given two quantities, the other two may be calculated. Fig. A.5.1 shows the F/v-wave-

impedance for the fundamental frequencies of the strings. The ratio of core-to-outer-diameter 

(κ) has little effect for f = fG; for heavy strings, and high frequencies, the bending stiffness 

needs to be considered, after all. 

                                                
♣ In chapter A.5, M stands for a mechanical moment, and M for the scale length of the strings. 
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Taking into account the bending stiffness, the F/v-wave-impedance is calculated as: 

 

 ;   

 

The sign of the wave impedance depends on the direction of propagation of the wave: for 

waves travelling to the right (increasing z), ZWF is positive; it is negative for waves travelling 

to the left. The flexural stiffness changes the F/v-wave-impedance in two ways: the summand 

Bk
2
/c is added, and the first term is also changed because the phase velocity (c = ω/k) 

increases with increasing frequency. Fig. A.5.2 illustrates, for an E2-string, the influence of 

the bending stiffness on the F/v-wave-impedance. In the range of low frequencies, Bk
2
 can be 

neglected with respect to Ψ, with the wave impedance approximately depending only on Ψ/c 

(for conversions see above). At higher frequencies, the influence of bending stiffness on the 

treble strings is small (G-string in Fig. A.5.2), but for the bass strings it is pronounced (E2-

string in Fig. A.5.2) – in particular given a relatively thick core (i.e. large κ).  

 

 

 

 

 

 

 

Fig. A.5.2: Influence of bending stiffness on the  

F/v-wave-impedance. E2-string (46 mil, κ = 0.42), 

G-string (17 mil, plain). The solid line indicates the 

total impedance, the dashed line indicates the first 

term (Ψk /ω = Ψ / c). 

“Wellenwiderstand” = wave impedance, 

“Frequenz” = frequency 

 
Taking into account the bending stiffness B, we have a 4

th
-order differential equation: 

independently of transverse force and transverse string displacement, excitation with a 

moment or a rotational movement is possible, as well, and the string end may be (at least 

theoretically) free, supported, clamped, or guided. The idealized boundary conditions for the 

force F, the velocity v, the angular velocity w, and the moment M result in:  

 

free: F = 0, M = 0; supported: v = 0, M = 0; clamped: v = 0, w = 0; guided: F = 0, w = 0. 

 

The free end of the string will be called into question immediately: it cannot exert any 

clamping force. Even in the theoretical literature, a guided mounting is listed only for the sake 

of completeness. However, it must not be overlooked here that these bearing conditions 

(bearing impedances) are frequency-dependent. At f = 0 Hz a tensioning force is 

indispensable, but at f ≠ 0 entirely different conditions can occur, as the following example 

shows: a spring-loaded mass is defined as the string bearing; the bearing impedance thus 

calculates as: Z = jωm + s/jω = (s – ω2
m) / jω. For f = 0, this bearing acts like a spring – it can 

absorb static tensioning forces.  At resonance, however, the impedance is zero - which 

implies: no force, despite movement.  
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In addition to the F/v-wave-impedance, the M/w-wave-impedance must also be taken into 

account for the rigid string. The M/w-wave-impedance connects the moment M to the angular 

velocity w. This angular velocity is not the angular frequency ω with which the string 

vibrates, but the plucking-attack-dependent rotational velocity of the individual string 

particles (Fig. A 4.1).  

 

       M/w-wave-impedance  

 

In the range of low frequencies, the phase-velocity c can be calculated in good approximation 

from the basic string frequency fG and twice the scale length M: c = 2M ⋅ fG. Since the bending 

stiffness depends on the string diameter to the power of four, ZWM also increases with the 

string diameter to the fourth (Fig. A.5.3). Given increasing frequency, c may however no 

longer be taken to be constant; rather, an increase over f must be considered, especially in the 

case of the bass strings (Fig. A.5.4): 

 

      Phase velocity 

 

  
 

Fig. A.5.3: M/w-wave-impedance (left), bending stiffness (right). Solid strings (---), wound strings with thick 

core (-----),wound strings with thin-core (.......). “Wellenwiderstand” = wave impedance; “Biegesteifigkeit” = 

bending stiffness; “Aussendurchmesser” = outer diameter. “h” (string) = “B” (-string). 

 

 

 

 

 

 

 

 

 

Fig. A.5.4: Phase velocity of bending wave: 

solid strings (---),  

wound strings with thick core (-----),  

wound strings with thin core (.......). 

“Phasengeschwindigkeit” = phase velocity 

“Frequenz” = frequency;   

“h” (string) = B (-string) 
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For Dilatational waves, the wave impedance ZW is also calculated from the product of length-

specific mass m' and phase velocity c, but now the phase velocity of the Dilatational wave is 

to be assumed as follows: 

 

     Wave impedance (Dilatational wave) 

 

Here, S stands for the cross-sectional area, E for Young’s modulus, and ρ for the density. 

Since no dispersion occurs, the wave impedance is frequency-independent.  

 

For wound strings, again the ratio of core diameter / outside diameter needs to be considered:  

κ = DK / DA. The winding increases the mass without significantly increasing the longitudinal 

stiffness (in approximation). The characteristic impedance results in: 

 

 ;     Dilatational-wave-impedance for wound strings 

 

The impedance of the Dilatational-wave-resistance is about twenty times as large as the 

impedance of the transverse wave. 

 

 

 
 

Fig. A.5.5: Wave-impedances for Dilatational-wave propagation. “Dehnwellenwiderstand” = Dilatational-

wave-impedance; “Aussendurchmessen” = outer diameter. 


